Suggested solution of test 1

1. Let P(n) be the following statement: For any $a \leq b, a, b \in \mathbb{R}$, if $[a, b] \subset \bigcup_{k=1}^{n} I_k$ where I_k are open intervals, then

$$\sum_{k=1}^{n} |I_k| \ge b - a.$$

When n = 1, the conclusion is immediate. Assume P(N) is true for some $N \in \mathbb{N}$, let $a \leq b, a, b \in \mathbb{R}$ and

$$[a,b] \subset \bigcup_{k=1}^{N+1} I_k.$$

Say for example, $a \in I_1 = (x_1, x_2)$. Then

$$[x_2,b] \subset \bigcup_{k=2}^{N+1} I_k.$$

By induction hypothesis, $b - x_2 \leq \sum_{k=2}^{N+1} |I_k|$. Hence

$$b-a = b-x_2+x_2-a \le b-x_2+x_2-x_1 \le \sum_{k=1}^{N+1} |I_k|.$$

By MI, it is done.

2. Recall

$$m^*([a,b]) = \inf\{\sum_{k=1}^{\infty} |I_k| : [a,b] \subset \cup I_k\}.$$

Since $[a, b] \subset (a - \epsilon, b + \epsilon)$ for all $\epsilon > 0$, we have

$$m^*([a,b]) \le b-a.$$

Let I_k be a open cover of [a, b], by compactness, there exists a finite subcover $\{I_j\}_{j=1}^N$ of [a, b]. By Q1,

$$b-a \le \sum_{j=1}^{N} |I_j| \le \sum_{k=1}^{\infty} |I_k|.$$

Hence, $m^*([a, b]) \ge b - a$.

3. f is called continuous if $\forall x \in \mathbb{R}, \forall \epsilon > 0, \exists \delta > 0$ such that for all $|x - y| < \delta$,

$$|f(x) - f(y)| < \epsilon.$$

If G is non-empty open set on \mathbb{R} , let $x \in f^{-1}(G)$, $f(x) = y \in G$. Then $\exists \epsilon > 0$ such that

$$V_{\epsilon}(f(x)) \subset G.$$

By continuity, $\exists \delta > 0$ such that whenever $z \in V_{\delta}(x)$,

$$|f(z) - f(x)| < \epsilon.$$

That is to say $V_{\delta}(x) \subset f^{-1}(G)$.

4. Denote \mathcal{B} to be the intersection of all σ -algebra containing all open sets. It is nonempty as $P(\mathbb{R})$ is a σ algebra containing the open sets. It is clear that \mathcal{B} contains open sets of \mathbb{R} . It suffices to show that it is a σ -algebra. The minimality follows easily from the construction.

For simplicity, we denote Σ to be a generic σ -algebra containing open sets. Suppose $A \in \mathcal{B} \subset \Sigma$ for any Σ . Then $A^c \in \Sigma$ for all Σ . Hence $A^c \in \mathcal{B}$.

If $A_n, n \in \mathbb{N}$ is inside $\mathcal{B}, A_n \in \Sigma$ for all Σ which implies $\cup A_n \in \Sigma$ for any Σ . Therefore, $\cup A_n \in \mathcal{B}$. Of course $\emptyset \in \mathcal{B}$ as $\emptyset \in \Sigma$ for any Σ .

5. Let $M = \{A \in P(\mathbb{R}) : f^{-1}(A) \in \mathcal{B}\}$. By Q3, it contains all open sets. And using the fact that

$$f^{-1}(A^c) = (f^{-1}(A))^c$$

and

$$\bigcup_{k=1}^{\infty} f^{-1}(A_k) = f^{-1}\left(\bigcup_{k=1}^{\infty} A_k\right).$$

M is a σ -algebra containing open sets. In particular, $\mathcal{B} \subset M$ by the minimality.